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Abstract

SAPE (Semi-Automatic Parameter Extraction) is a program for extracting information relevant to strain analysis from input digital images.

Input images are manually produced by tracing the outlines of objects of interest. This is a less onerous, more objective and much faster task

than manual measurement or digitisation of object data (i.e. aspect ratio Ri and orientation fi). SAPE rapidly extracts the required data by

using a simple region-growing algorithm to identify regions of interest. Subsequently, the second moments are calculated for each region

enabling the common strain analysis parameters to be readily computed. The performance of SAPE was tested on three samples

(microphotographs of deformed sandstone and oolite as well as a meter scale photograph of a deformed conglomerate) using a non-overlap

statistic. This statistic is a normalised measure of overlap between two regions and can be used to compare different fits applied to the same

region. In each case SAPE out-performed the manual method. SAPE offers significant advantages in terms of speed, objectivity and

robustness and should facilitate the collection of large datasets for strain analysis.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Strain determination using populations of suitable

objects is an extremely useful technique for understanding

the processes and products of deformation of the Earth’s

crust from the micro- to macro-scales. Based on the passive

behaviour of elliptical objects during deformation Ramsay

(1967) introduced the Rf/f method for strain analysis. Since

then there have been many graphical, approximate and

algebraic methods developed, based on the same assump-

tions (Dunnet, 1969; Elliott, 1970; Dunnet and Siddans,

1971; Matthews et al., 1974; Borradaile, 1976; Shimamoto

and Ikeda, 1976; Lisle, 1977a,b, 1985; Peach and Lisle,

1979; Yu and Zheng, 1984; Mulchrone and Meere, 2001;

Mulchrone et al., 2003). Up until recently only the method
0191-8141/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jsg.2005.05.019

* Corresponding author. Tel.: C353 21 490 3411; fax: C353 21 42 708

13.

E-mail address: k.mulchrone@ucc.ie (K.F. Mulchrone).
of Robin (1977) was considered general enough to work

with non-elliptically shaped objects. However, Mulchrone

and Roy Choudhury (2004) have demonstrated that if the

objects used in an analysis can be identified using either

boundary or region based ellipse-fitting methods, then most

previously developed algebraic techniques can be applied to

objects of arbitrary shape. An alternative class of methods

based on object–object separations was initially cham-

pioned by Fry (1979) and has undergone considerable

development, spawning the Normalised Fry Method

(Erslev, 1988) and the enhanced Normalised Fry Method

(Erslev and Ge, 1990). Additionally, McNaught (1994) has

extended these methods for application to aggregates of

non-elliptical objects and Mulchrone (2003) applied

Delaunay triangulation to resurrect the nearest neighbour

method of strain analysis.

One disadvantage associated with all population-based

strain analysis is the effort required to obtain the raw data. In

a regional strain study of the order of 20–50 samples

(preferably more) require analysis and for a 3D strain

estimate this usually requires analysis of at least three 2D

sections per sample. Given that Meere and Mulchrone
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Fig. 1. (a) Examples of the simple growth and shrinking algorithms. In the

upper case a spurious white spot is removed by a single growth followed by

a single shrink. A shrink followed by a growth removes black spots.

Spurious white inclusions were the most common and disruptive blemishes

found in grain outlines as these could be erroneously recognised as grains.

Therefore growth followed by shrink is implemented in SAPE. (b) Typical

form of input image required by SAPE with white regions enclosed by

black outlines on a white background. Also marked are the three regions

referred to in the main text.
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(2003) have shown that a minimum of 150 measurements

per 2D section are required for sufficient statistical

accuracy, this amounts to approximately 10,000–20,000

individual object identifications. Manual data acquisition,

i.e. grain identification and ellipse fitting will clearly be a

time consuming and unenviable task, but has had to be done

in the past. If the objects used are of arbitrary shape, then a

numerical ellipse fitting technique needs to be applied

(Mulchrone and Roy Choudhury, 2004). This is not

practical to attempt manually. Clearly then, some form of

automation is required to aid in the acquisition of raw data

for strain analysis.

Methods for automated image analysis have been

presented in the past and have been successfully applied

in geological analysis. Erslev and Ge (1990) developed the

program INSTRAIN, which takes as input digitised object

outlines and then calculates strain using the enhanced Fry,

enhanced normalised Fry and mean object ellipse methods.

McNaught (1994) extracts data for analysis by first

producing an overlay tracing and the selecting boundary

points using a digitising tablet for subsequent polygonal

representation of objects. Masuda et al. (1991) used a

LUZEX image analyser to measure grain areas in

microphotographs and Ailleres et al. (1995) developed

both hardware and third party software configurations for

semi-automatic grain identification for Fry strain analysis

(Fry, 1979). In applying the projection method, Panozzo

(1984) utilised digitised sets of points representing linear or

elliptical objects. Mukul and Mitra (1998) analysed an

unprecedented 119 samples of quartzite using the modified

normalised Fry method (McNaught, 1994) from an area of

200 km2 around the Sheeprock Thrust Sheet, Sevier Fold-

and-Thrust belt, Utah, USA. In order to achieve this high

level of sampling a semi-automatic procedure for obtaining

the raw data for strain analysis as described by Mukul

(1998) was utilised. This involved taking microphotographs

of thin sections and manually tracing quartz grain

boundaries. Subsequently, third party image analysis soft-

ware identified the centroids and areas of the grains.

Panozzo Heilbronner and Pauli (1993) developed a ‘CIP’

method to identify c-axes of quartz grains. Heilbronner

(2000) also developed a ‘Lazy Grain Boundary’ method that

can be used in a fully automatic or semi-automatic mode to

identify grain boundaries of various objects.

In this paper we present a method called Semi-

Automated Parameter Extraction (SAPE). SAPE enables

rapid parameter extraction from any material or surface that

(a) can be photographed and (b) a human can distinguish the

objects to be studied. This makes SAPE applicable to almost

every type of lithology. In operational terms, SAPE is

similar to the methods described in Erslev and Ge (1990)

and Mukul (1998), in that all of them use manually drawn

boundaries as input. The difference is in the output: Erslev

and Ge (1990) and Mukul (1998) extract parameters

necessary for centre-to-centre analysis and SAPE extracts

parameters necessary for Rf/f analyses.
2. SAPE methodology
2.1. Boundary/region identification

The most difficult part of extracting information about a

population of objects in a digital image, from the

perspective of computer implementation, is identification

of boundaries or regions occupied by those objects. On the

other hand, this is a trivial exercise for humans. Once the

regions have been identified, parameters such as the aspect

ratio and orientation of the object or second moments must

be extracted. Humans can perform this task, but in a

subjective manner that may introduce unwarranted biases

into the data acquired (Mulchrone and Roy Choudhury,

2004). Additionally, accurate parameter estimation and

recording of the same is time consuming. By contrast,

parameter estimation is a trivial task for computers. The

idea driving SAPE is to divide the tasks involved in

parameter extraction according to human/computer

aptitude.

Therefore, the task of identifying regions is relegated to

the human user. The raw input for this activity is a digital

image, which may be a microphotograph of the thin section

or a field photograph of the rock surface containing the

marker objects. This is referred to as the raw image. The end
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result of this activity must be a white digital image with

object boundaries identified in black (see Fig. 1), which is

referred to as the input image. There are many possible

approaches to producing the input image and we investi-

gated two. First, we imported the raw image into popular

image editing software packages such as Freehand or

CorelDraw and traced out the object boundaries in the

software to produce the input image. Second, we printed out

a high quality copy of the raw image and, using an inking

pen and tracing paper, produced a physical tracing.

Subsequently, this was digitally scanned to produce the

input image. For a large volume of work the second

approach was found to be faster and mentally more

bearable. The approach of tracing followed by image

analysis was first advocated by Mukul (1998) leading to a

high quality dataset (Mukul and Mitra, 1998). However, we

have developed software specifically aimed at extracting

data for the purpose of Rf/f strain analysis.
Fig. 2. Pseudocode for the simple region-growing algorithm.
2.2. Image analysis

SAPE takes the input image and extracts the required

parameters with only minor further human intervention.

SAPE expects the input image to be in standard bitmap

format and utilises some standard image analysis techniques

(see for example Seul et al., 2000, pp. 118–175) to identify

the regions enclosed by the black boundaries in the input

image. The software for image analysis is object-oriented

and implemented in CCC. There are a number of steps

involved in the analysis:

1. Extract input image data.

2. Boundary smoothing.

3. Background identification.

4. Region identification.

5. Parameter extraction.

Access to the input image data is facilitated by the open-

source library of image handling functions FreeImage (see

http://freeimage.sourceforge.net). The input image data is

copied into a two-dimensional array of data such that rows

vary from 0 to hK1 (h, the height of the image in pixels) and

columns vary from 0 to wK1 (w, the width of the image in

pixels) and that the data at (0,0) corresponds to the top-left

of the input image and that at (hK1,wK1) corresponds to

the bottom-right of the image. Each data point consists of

the following data elements (value, label, grow, x, y). The

value parameter is 0 for a white pixel and 1 for black; label

and grow are used in region identification, whereas x and y

specify the location of the data point in the array. Initially,

every data point has label set to 0 and grow set to 1.

Boundary smoothing is applied to reduce roughness at

the pixel scale and to eliminate spurious spots and blemishes

on the input image. Smoothing is accomplished by applying

a pixel growth algorithm n-times followed by a pixel

shrinking algorithm m-times, typically applied only once or
twice. The growth algorithm works by scanning through all

the data points and if there are one or more black-valued

data points adjacent to a white-valued data point (i.e.

directly or diagonally), then the white data point is changed

to black. The shrinking algorithm works in reverse by

turning black points to white if they have one or more

adjacent white points. Simple examples of these algorithms

are provided in Fig. 1a.

Both background and region identification are based

largely on a simple region growing (SRG) algorithm

(Adams and Bischof, 1994). To explain the algorithm

consider the situation shown in Fig. 1b and concentrate on

the simplified problem of the magnified inset. There are

three regions of data: (1) white data points outside the

boundary, (2) black data points defining the boundary, and

(3) white data points inside the boundary. For SRG it is

assumed that one data point, termed the seed, in region 3 is

known (it will be explained later how seed pixels are

identified). A unique value for label (O0) is assigned to the

seed. The GrowSeed function (see Fig. 2 for pseudocode) is

created from the position in the array of the seed data point

and the unique label value to be assigned to data points in

http://freeimage.sourceforge.net


Table 1

Main menu options available in SAPE

File Process View

Import bitmap Set parameters Raw data

Save bitmap Run analysis Processed data

Export parameters Extracted data

All data Processed data and

fitted ellipses

Rf/f data

Moment data

Print

Print preview

Exit

K.F. Mulchrone et al. / Journal of Structural Geology 27 (2005) 2084–2098 2087
the grown region. This algorithm works by progressively

building a list of pixels on the border of the growing region

that grows until it hits black pixels in region 2. Two lists of

data points are maintained called border and nextborder.

Note that the seed point has a unique label and all other

points have labelZ0, and from initialisation all points have

growZ1 meaning that they can grow, if necessary. To

begin, the seed point is added to border. Next, for each data

point in border (initially just the seed) the adjacent data

points (eight in total) are checked. Any point with growZ1,

and the same value as the seed and a label different from that

of the seed will be added to nextborder. If no adjacent data

points were added then the current data point can no longer

grow and grow is set to 0 and the current point is added to

nextborder. This procedure is repeated until such time as no

more new data points are added to border, i.e. the region has

grown to its full extent.

The program assumes that the data point at (0,0)

represents a white pixel and the background region is

identified by using this pixel as a seed and growing a region

with label 1. Subsequently a scan of all the data points is

performed. Any data point encountered with valueZ0 and

labelZ0 is not in the background region (i.e. labelZ1) or

another grown interior region (i.e. labelO1) or a boundary

(boundary pixels have valueZ1) and so must be a seed.

Once a seed pixel is encountered, the value of label is

incremented by one to get a unique value and the GrowSeed

function is created for the seed and new unique label.

After image processing is complete (i.e. steps 1–4) the

array of data points contains background pixels with labelZ
1, region pixels with labelR2 and border pixels with label 0.

The final step of parameter extraction simply consists of

sequentially selecting the pixels that belong to each region

with labelR2 and calculating the second moments of each

such region using the methods of Mulchrone and Roy

Choudhury (2004). More formally, a set of functions can be

defined on the rectangular region G, which encloses the

entire input image, i.e. in terms of pixels G goes from 0 to

wK1 and from 0 to hK1:

bk Z ði; jÞZ
1 if data½i�½j�:labelZ k

0 if data ½i�½j�:labelsk

(
(1)

where kR2. The (pCq)th moment of the kth region is then

given by:

ðmpqÞk Z
XwK1

iZ0

XhK1

jZ0

ipjpbkði; jÞ (2)

The central second moments for each region are given

by:

ðu20Þk Z ðm20ÞkK
ðm10Þ

2
k

ðm00Þk
(3)
ðu02Þk Z ðm02ÞkK
ðm01Þ

2
k

ðm00Þk
(4)

ðu11Þk Z ðm11ÞkK
ðm10Þkðm01Þk

ðm00Þk
(5)

and, shown in Mulchrone and Roy Choudhury (2004), the

aspect ratio (Rk), orientation (fk), length of major (ak) and

minor (bk) axes of the best fit ellipse of the kth region are

then given by:

Dk Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðu11Þ

2
k C ððu20ÞkKðu02ÞkÞ

2

q
(6)

fk Z
1

2
tanK1 2ðu11Þk

ðu20ÞkKðu02Þk

� �
(7)

ak Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ððu20Þk C ðu02Þk CDkÞ

ðu11Þk

s
(8)

bk Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ððu20Þk C ðu02Þk CDkÞ

ðu11Þk

s
(9)

Rk Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu20Þk C ðu02Þk CDk

ðu20Þk C ðu02ÞkKDk

s
(10)

3. Using SAPE

The program has a simple menu/toolbar driven interface

and is written in CCC (Visual CCC version 6.0) and is

designed to minimise user error. An overview of the

program options is given in Table 1. By choosing File/
Import Image, an input image file for processing can be

selected through a standard file open dialog interface. This

option is always available. File/Save Bitmap enables the

current bitmap image on screen to be saved to a bitmap file.

File/Export Parameters allows the extracted data to be

saved to a tab delimited text file, in several formats, for

further processing. File/Export Parameters/All Data

exports the region centroid x and y-coordinates, the length of

the major and minor best fit ellipse axes, ellipse long axis

orientation and ellipse area for each fitted ellipse on each
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line of text. File/Export Parameters/Rf/f Data exports

only the best fit ellipse aspect ratio and long axis orientation

per best fit ellipse per line of text. File/Export

Parameters/Moment Data exports the region centroid x

and y-coordinates, and the following moments (u00)k (u02)k
(u20)k and (u11)k. The File/Print and Print Preview options

send the current screen content to the printer and File/Exit

ends the application.

Under the Process menu Set Parameters brings up a

dialog box enabling customisation of parameters affecting

the outcome of the main processing algorithm. The data

reduction parameters are applied after the analysis is

performed and allow for automatic exclusion of processed

regions by area. For example, setting the bottom tail% to

five means that regions with an area less than the 5%

percentile are automatically excluded from the results. This

exclusion may be manually overridden at a later stage as

described below. In the smoothing section the shrink and

grow numbers refer to the number of times the preproces-

sing shrinking and growth algorithms are applied. By

default each of these values are set to 2. In order to apply the

changes made in this dialog, the analysis must be re-run.

Selecting Process/Run Analysis kicks off the main

processing algorithm and is only available when an input

image has been previously selected. During processing a

progress bar is displayed in the status bar to indicate how

much time is remaining before completion.

The View menu enables the user to specify whether or

not they want to see the toolbar or status bar. More

importantly, it allows the user to select between different

views of the data. All views are available only after first

selecting an image and then processing it. There are four

available views (see Fig. 3): (1) a view of the raw

unprocessed image (Raw Data), (2) a view of the processed

image including identified regions in turquoise and white

labels for each region and excluded regions are labelled in

red (Processed Data), (3) a list of the extracted data from the

image, again excluded regions are identified (List of

Extracted Data), and (4) a view of the labelled processed

data with best fit ellipse superimposed in red (Processed

Data and Fitted Ellipses). In both of the processed data

views the colour of the region label indicates inclusion

(white) or exclusion (red). The inclusion or exclusion of a

particular region can be toggled by clicking on its label.

There are a number of potential problems associated with

SAPE, most of which can be solved with foresight and

manual intervention. SAPE works best and without manual

intervention if the input image consists of separable regions,

i.e. between any two regions that are in contact. However, in

practice this may not be the case. For example, in Fig. 4a, a

cluster of regions enclose an area of background. SAPE will

mistakenly identify the surrounded background as an

additional region. However, this problem is easily solved

by manual intervention. SAPE cannot cope with incomple-

tely outlined regions (see Fig. 4b) and these will usually be

consigned to the background region. Another possible
problem occurs if the top-left portion of the image is not

white, which causes the background identification part of

the algorithm to fail, which usually means that it is

mistakenly identified as a large region.
4. A validation and comparison study

4.1. Introduction

The effectiveness of the SAPE software was tested by

comparing data acquired using SAPE with those using fully

manual methods. Three naturally deformed lithologies, a

sandstone, oolite and conglomerate were selected for this

purpose. These samples represent three distinct lithological

types and involve acquisition of data from both the micro-

scopic and mesoscopic scales of observation. The sandstone

is a deformed continental quartz wacke from the Upper

Devonian of southern Ireland. Data were collected from a

photomicrograph of a section cut orthogonal to the cleavage

fabric. Oolite data were obtained from a negative print

photomicrograph of a deformed ironstone oolite in fig. 5.7

from Ramsay and Huber (1983, p. 79). The conglomerate

data was collected from an outcrop scale field photograph

of a deformed Silurian cobble conglomerate (quartzite

and psammite clasts) from Croagh Patrick, south Mayo,

Ireland.

Manual measurement of strain marker parameters (i.e.

aspect ratio/long axis orientation Ri/fi) is very subjective

and there is no general consensus on methodology

(Mulchrone and Roy Choudhury, 2004). The manual

approach adopted here is to first identify the longest

possible line through the target shape and take this to be

the long axis. The short axis is then taken to be the longest

possible line normal to the long axis direction. Alternative

approaches might include a simultaneous visual fit of both

axes to the marker. For SAPE, digital photographs of the

samples were imported into Freehand and manual measure-

ments were made using the line tool. In addition, for each

sample a line trace of marker boundaries was made from the

digital sample photographs and subsequently scanned into a

bitmap image, and used as the input image for SAPE.

A detailed example is illustrated for the sandstone

sample in Fig. 5. In Fig. 5a, the original microphotograph is

shown and the corresponding tracing (see Fig. 5b) is used as

the input for SAPE. Meere and Mulchrone (2003) have

estimated that at least 150 grains are required for reliable

strain estimation from a microphotograph. Accordingly, we

have chosen a selection of 150 grains for this tracing. We

also made an effort to choose a representative selection of

grains from the microphotographs. The SAPE processed

image containing identified regions, labels and best fit

ellipses is illustrated in Fig. 5c. To produce this image the

growth and shrink algorithms were applied once each and

the 5% tails are excluded automatically (i.e. those with red

labels). Clearly most of the excluded regions should actually



Fig. 3. Views available in SAPE. (a) Unprocessed input image, (b) processed image, (c) list of extracted data, and (d) processed data and fitted ellipses.
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be included. This could be remedied either by manually

clicking the labels or by re-running the analysis and setting

the tails to 0%. Also, in the bottom right of the processed

image, a clast outline has not been identified due to a hole in

the boundary.
4.2. SAPE versus manual method

Bivariate plots of SAPE versus manual for Ri and fi data

demonstrate a good overall correlation between the manual
and SAPE methods for all samples studied (see Fig. 6). In

addition, the fact that the line yZx passes through the

middle of the data clusters indicates that there is no

systematic under- or overestimation in SAPE measurements

relative to manual measurements. Considering the Ri data, it

is evident that the correlation between the methods

deteriorates for increasing Ri values, a trend best illustrated

by the sandstone data (Fig. 6a). This trend is not as apparent

for the oolite data (Fig. 6b), which results in a good

correlation value (rZ0.95), primarily because Ri does not



Fig. 4. Two examples of potential problems for SAPE.

Fig. 5. The sandstone example used for validation. (a) The original

microphotograph, (b) object outlines, the input image, and (c) the identified

regions with labels and best fit ellipses.
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take large values. This effect can also be seen in the

conglomerate data set that contains Ri values of up to 5.0

and higher (Fig. 6c). However, there is an additional

complication with the conglomerate data in that there is a

consistent overestimation of Ri by the manual method in

comparison with SAPE and hence the data set shows the

poorest correlation value of rZ0.77. One likely explanation

for this is related to the actual shape of the conglomerate

clasts and the settings used in SAPE. This lithology has

undergone significant flattening producing elongated clasts

with narrow ‘peninsula-like’ projections in the flattening

plane. The manual method takes account of these

projections while the SAPE software has a tendency to cut

off and exclude them from the main body of the clast due to

a combination of narrow region widths in pixels and the

growth and shrink settings (both set to 2 for this analysis).

This ‘cut-off’ problem is best avoided by scaling the

input image such that the width in pixels of all target

regions are large, i.e. greater than around 10 pixels and

may also be reduced by reducing the growth and shrink

settings.

It is interesting to note that the ‘cut-off’ problem does not

show up in the fi data for the conglomerate where a

relatively good correlation is observed. Overall the fi data

shows better correlation values than the Ri data and there are

no trends indicating more or less correlation along any

particular direction.
4.3. Relationship between error and strain marker size

The error associated with fitting ellipses to strain markers

is estimated by the difference between values calculated

using the manual and SAPE methods. In Fig. 7, plots of the
error Ri and fi against clast area in pixels squared,

demonstrate that for both Ri and fi there tends to be larger

errors for small clasts and smaller errors for larger clasts for

each sample. This is to be expected because the quality of fit

of an ellipse to a given clast will deteriorate with decreasing

clast size due to the practical difficulty in accurately defining

long and short axes for smaller clast sizes. The effect of Ri

on errors was also investigated (see Fig. 8). As might be

intuitively expected, larger Ri values show lower errors for

fi values, presumably due to the greater clarity of clast long

axes. However, an opposite, almost counterintuitive effect is

seen in the Ri data whereby increasing errors correspond to

increasing Ri values. This again may be due to the elongate



Fig. 6. Bivariate plot for clast aspect ratios (Ri) and long axis orientation (fi) of SAPE versus manual data for (a) sandstone, (b) oolite, and (c) conglomerate.
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shape and narrow terminations of high Ri clasts that are

excluded by the SAPE software and result in shorter clast

long axis estimates.
5. Non-overlap measure
5.1. Introduction

The analysis of Section 4 demonstrates that measure-

ments made by the manual and SAPE methods tend to agree

quite well with each other. However, this analysis fails to

discriminate between the methods, i.e. say which method is

‘better’. Of course, to make such a statement, one needs to

have a definition of what constitutes being ‘better’. In

evaluating measurement methods, it is usual practice to

compare a proposed method against some sort of ‘ground

truth’ or ‘gold standard’. Although a ‘gold standard’ method

of measurement does not exist in our setting, a ‘ground

truth’ does indeed exist: they are the grain boundaries of the

input image. In this context, one can define a measurement

method to be ‘better’ than another if the ellipse generated by

these measurements approximates the grain boundary more

closely.

The non-overlap statistic is a measure of closeness of two

regions. The non-overlap statistic is defined as the area of

‘non-overlap’ between two regions, normalised by the area

of the second region. Mathematically, a region can be

defined as a point set, i.e. a region is defined by the set of

points that belongs to it. Using the language of set

operations, the non-overlap of two regions A and B, denoted

by nol(A,B), can be defined as a ratio of two areas:

nolðA;BÞZ
AreaðAnBÞCAreaðBnAÞ

AreaðBÞ

The numerator of this expression is the area of the

symmetric difference of regions A and B, i.e. the set of all

points that belong to A but not to B and vice versa. Two

regions are identical if and only if their non-overlap is 0. In

Fig. 9a and b, the non-overlap region between the circle (A)

and the square (B) is shown in black. The denominator of the

expression is the area of B (which is the ‘reference region’)

and is used as a scaling factor. It ensures that nol(A,B)

remains unchanged no matter what scale is used to make the

measurements. In this context, note that in general

nol(A,B)snol(B,A). The choice of a symmetric denomi-

nator, such as area(AgB), would ensure this. However, it is

unsuited to our purpose. The non-overlap measure will be

used for comparing regions A and A 0 (e.g. circles),

constructed by two different methods for the same reference

region B (e.g. a square). In this context, the choice of area(B)

ensures that the denominator remains unchanged for both

nol(A,B) and nol(A 0,B), thus ensuring comparability,

whereas the choice of area(AgB) does not. When

interpreting non-overlap values, it should be noted that
non-overlap is an area based (i.e. two-dimensional) measure

of goodness of fit. Consequently, typical non-overlap values

will be higher than corresponding one-dimensional good-

ness of fit measures, such as those for curve-fitting.

It is not difficult to represent the output of both manual

and SAPE data acquisition procedures as fitted ellipses. This

means that the non-overlap measure can be used to quantify

how well the fitted ellipse generated by a data acquisition

method fits a grain boundary. However, it is not possible to

treat the non-overlap value between the grain boundary and

the fitted ellipse as an absolute measure of how well the data

acquisition works. A poor value could be due to one of two

factors: (a) poor ellipse fitting, or (b) non-elliptical shape of

grain. For instance, in Fig. 9a, the reference region (B) is

in the shape of a square. The fitted ellipse is the circle.

The non-overlap statistic in this case computes to 0.22 (i.e.

the non-overlap area is 22% of the area of the square). The

number 0.22 in part represents how far a square is from an

elliptical shape.

5.2. Non-overlap measure as a bench mark for ellipse fitting

Although the non-overlap measure cannot be used as an

absolute measure of how well an ellipse fits across regions,

it can be used as a tool for comparing different fits on the

same region. For instance, in Fig. 9b, the same square as in

Fig. 9a is approximated by a different circle. The non-

overlap measure of the circle in Fig. 9b (with respect to the

same square) turns out to be 0.80. This means that the circle

in Fig. 9a is a better approximation to the square than that in

Fig. 9b. It is important to note that this comparison can only

be made if the same reference shape is being used in both

cases.

In a similar manner, the non-overlap measure can be used

to provide a relative comparison of the approximation

properties of two different ellipse-fitting techniques for a

given set of grains. Given a set of grains, the set of non-

overlap values for the ellipses fitted to them by the manual

method can be computed. Correspondingly, a second set of

non-overlap values for the ellipses fitted to the same grains

by the SAPE method can be computed. A statistical

comparison of these two sets of non-overlap values will

determine how one method performed relative to the other.

Comparisons of these two sets of non-overlap values can be

done in a number of ways. A graphical method would be to

compare their distributions using histograms. Using the

oolite sample as a reference, we can see the distribution of

non-overlap values for manually fitted and SAPE fitted

ellipses in Fig. 10. It is clear that the non-overlap values for

SAPE fitted ellipses are in general lower than their manually

fitted counterparts.

The distribution of non-overlaps can be summarised by

looking at the average (median) non-overlap value for each

method (see Table 2). For the oolite example, the average

non-overlap for manually fitted ellipses is 0.15 and that for

SAPE fitted ellipses is 0.06. As mentioned earlier, the other



Fig. 7. Bivariate plot of estimated error in aspect ratio (i.e. [Ri(manual)KRi(SAPE)]) and orientation (i.e. [fi(manual)Kfi(SAPE)]) versus manually measured

clast aspect ratio for (a) sandstone, (b) oolite, and (c) conglomerate.
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aspect of non-overlap values is that they are (in part) a

measure of ellipticity of the underlying grains. In this

example the underlying grains are ooids, which generally
have a good elliptical shape. This is reflected in the low non-

overlap values for both sets of values.

The corresponding values for the dataset (conglomerate)



Fig. 8. Bivariate plot of estimated error in aspect ratio (i.e. [Ri(manual)KRi(SAPE)]) and orientation (i.e. [fi(manual)Kfi(SAPE)]) versus clast area in pixels

for (a) sandstone, (b) oolite, and (c) conglomerate.
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K.F. Mulchrone et al. / Journal of Structural Geology 27 (2005) 2084–2098 2095
data set are an average of 0.24 for manually fitted ellipses

and 0.18 for SAPE fitted ellipses. Again SAPE performs

favourably compared with manual measurements, but in this

case the magnitude of improvement is not very large. Note

also that non-overlap values are larger on average for this

dataset, an indication that grain shapes in this example are

less elliptical than in the case of ooids. A similar set of

results is obtained for the sandstone grains, although the

median non-overlap is slightly worse than the

conglomerates.

Summarising the performance of the two methods, one

can say in terms of the non-overlap statistic that the SAPE

method tends to perform at least as well as the manual

method. Of course, in addition to providing modest

improvement in terms of quality of fit, SAPE also provides

a semi-automatic method for extracting data for strain

analysis, which is far faster than manual methods.
6. Measurement error analysis

In Section 4.3 it was noted that the errors in

measurements (for both SAPE and manual methods) tend

to show strong relationships with size and object aspect ratio

(Ri). In this section, elementary error analysis is used to

provide some theoretical justification for these empirical

findings. The analysis is restricted to a consideration of the

errors in manual measurements for reasons of simplicity.

The result for expected error in measurement derived in this
Fig. 9. (a) Region of non-overlap between a square and a circle. (b) Region

of non-overlap between a square and circumscribed circle.
section can also be used in other applications, such as the

construction of confidence intervals for strain estimates or

the development of a weighted strain estimate.

The Ri measurement is effected by manually measuring

the major and minor axes and then taking the ratio. As with

any manual (or indeed mechanical) measurement, the

measured axes are subject to measurement error. The

cause of this measurement error could be manifold, from

things like the accuracy of the measuring instrument,

parallax, the resolution of the image to processes like

dissolution, etc. Given the heterogeneous (hence unattribu-

table) nature of this error, it is convenient to treat the

magnitude of error as a random quantity. Thus the measured

major axis can be expressed as MmZMtC31, where Mt is

the true major axis and 31 is the random error of its

measurement. Similarly, the measured minor axis can be

expressed as mmZmtC32, where mt is the true minor axis

and 32 is the random error of its measurement. How these

errors affect the measurement of Ri is now examined (note

that Rm
i is the measured value of Ri and R

t
i is the true value of

Ri).

Rm
i Z

Mm

mm
Z

Mt C31

mt C32
Z

Mt

mt
1C

31

Mt

� �
1C

32

mt

� �K1

(11)
Fig. 10. Distribution of non-overlap values for (a) manually fitted ellipses

and (b) SAPE ellipses for the oolite example.



Table 2

Non-overlap results for manual and SAPE processing of samples

Sample Manual SAPE

Sandstone 0.27 0.22

Oolite 0.15 0.06

Conglomerate 0.27 0.22
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Eq. (11) can be simplified by expanding the last term as a

Taylor series and ignoring higher order terms (which is

justified provided the magnitude of the error 32, is small

compared to the true minor axis, mt). Therefore:

Rm
i Z

Mt

mt
1C

31

Mt
K

32

mt

� �
(12)

The error in the measurement of the axial ratio ð3mR Þ is

thus the difference between Rm
i and Rt

iZ
Mt

mt , the true axial

ratio. Thus using Eq. (11):

3mR ZRm
i KRt

i Z
Mt

mt

31

Mt
K

32

mt

� �
ZRt

i

31

Mt
K

32

mt

� �
(13)

Eq. (13) expresses the error in terms of random

quantities. It can thus be small or large depending on the

particular circumstance. However, an expression for the

mean squared error (MSE) or variance ðVð3mR ÞÞ of this error

can be obtained. This expression indicates how the square of

the error behaves on average:

Vð3mR ÞZ ðRt
iÞ
2 s21

ðMtÞ2
C

s22

ðmtÞ2

� �
(14)

In Eq. (14), the quantities s21 and s22 indicate the MSE of

measuring the major and minor axes, respectively. In

deriving Eq. (14) it has been assumed that these errors are

independent of each other. Although this is not a crucial

assumption in what follows, it makes the expression

simpler. Eq. (14) immediately indicates that the relationship

between measurement error of Ri and its actual value is an

increasing one.

To be more precise than this, the relationship between

area (Ai) and the major and minor axes must be specified.

Intuitively it may be asserted that Ai is roughly proportional

to the magnitude of the major and minor axes. Consider first

though, the simplest case of an elliptical grain, in which

case:

Ai Z
p

4
Mtmt (15)

Noting that Rt
iZ

Mt

mt then:

ðMtÞ2 Z
4AiR

t
i

p
(16)

ðmtÞ2 Z
4Ai

pRt
i

(17)
Substituting into Eq. (14):

Vð3mR ÞZ ðRt
iÞ
2 ps21

4AiR
t
i

C
pRt

is
2
2

4Ai

� �

Z
p

4Ai

ðRt
is

2
1 C ðRt

iÞ
3s22Þ (18)

Eq. (18) clearly gives the relationship between the MSE

of measuring the axial ratio Ri by the manual method and the

size and axial ratio of the clast, in the case of an elliptical

clast. In detail, the MSE is inversely proportional to the size

of the clast, but directly proportional to the cube of the axial

ratio. This is in broad agreement with the empirical results

presented earlier as well as those of McNaught (2002) and

Meere and Mulchrone (2003). Extending this result to

include other more general shapes is analytically difficult

and has not yet been attempted. However, it is conjectured

that a similar relationship would be found.

Although the findings of Eq. (18) are a broad

confirmation of the results of Section 4, it should be noted

that Eq. (18) is not immediately applicable to the errors

discussed in Section 4. In particular, Section 4 looks at the

difference between two measurement methods. Of these,

only manual measurement has been considered in the

theoretical analysis above. Moreover, strictly speaking, Eq.

(18) only holds for objects that are perfectly elliptical, a

condition rarely encountered in nature.
7. Discussion and conclusions

SAPE is a program for extracting information relevant to

strain analysis from input digital images that consist of

white regions enclosed by a black outline on a white

background. Digital images of natural rocks or microphoto-

graphs never conform to this specification and the creation

of the input image therefore involves either a complex

computer program or human input. Writing a computer

program that can handle the complexities of identifying

regions of interest in any given material is not practical right

now. Therefore, the logic of SAPE is to allow the human

user to perform this computationally onerous task. Once the

input image is prepared, SAPE rapidly extracts the required

data. As such, SAPE is an intermediate step along the way to

the ideal solution.

SAPE works by using a simple region-growing algorithm

to identify regions of interest from the input image.

Subsequently, the second moments are calculated for each

region enabling the common strain analysis parameters (i.e.

Ri and fi) to be readily computed (Mulchrone and Roy

Choudhury, 2004). The program was used to extract

information from microphotographs of deformed sandstone

and oolite as well as a meter scale photograph of deformed

conglomerate. SAPE compared well with a manual analysis

of the same samples. The non-overlap statistic was

introduced as a measure by which the performance of two
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different methods for data extraction could be judged. In all

three examples SAPE performed at least as well as the

manual method.

Previously, manual recording of strain data would entail

for each object (1) identification of a suitable object, (2)

identification of long and short axes (a totally subjective

procedure), (3) measurement of length and orientation of

long axis and length of short axis, (4) recording of results to

paper (optional), and (5) transfer of results to computer.

SAPE allows for rapid extraction of data from images

because, from a human perspective, the above five steps are

reduced to one step, i.e. trace the outlines of the objects of

interest. In our experience, the time required to manually

measure 150 objects is of the order of 1.5 h, whereas tracing

outlines of the same takes only 15 min. Additionally, tracing

is found to be less tedious and error prone and the task could

be performed for long periods of time without tiredness.

Combining the time advantage with the objectivity,

robustness and ease of the approach, it is felt that use of

SAPE will allow for easier capture of larger datasets and

therefore more reliable strain data in structural studies.

Error analysis of measurement methods is important for a

variety of reasons. Apart from validating the accuracy of the

method, knowledge of the distribution of error and how it

behaves with respect to other variables, such as clast size

and shape, can be useful in strain analysis calculations. In

particular, it can be used for the calculation of error bounds

for the strain estimate and may also be incorporated into

strategies such as weighted strain estimation.

Empirical analysis of the discrepancy between SAPE and

manual measurements done in Section 4 demonstrates

certain trends in relation to clast size and aspect ratio. In

particular, we observed that the discrepancy decreased with

increasing clast size while it increased with aspect ratios.

However, the degree of relationship between these variables

appears to differ between lithologies, with conglomerate

displaying the most marked trends and oolites the least

marked. A theoretical analysis of errors for the manual

measurement method also confirmed these relationships

between the measurement error versus clast size and aspect

ratio. However, it was noted that the theoretical analysis was

only valid under a restricted setting. It is hoped that

subsequent analysis, under less restrictive conditions, will

demonstrate how errors behave under a variety of settings. It

is also hoped that future work will investigate errors in the

SAPE measurement method in more detail.
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